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A rigid spherical lap and rigid part in extended contact can only be spheres
coincident to within the dimension of the intervening abrasive. Their only
motion with respect to each while maintaining contact are their individual
rotations. If the axes of these two rotations are noncoincident, they define a
plane. If the axes are moving with respect to each other, this movement can be
regarded as a rotational vector in a direction orthogonal to the plane defined by
the two axes above, and this vector can be added to either of the two rotations
described above or apportioned between them to define a reference frame. This
demonstrates that at any moment there are actually only two independent
rotations. For those familiar with vector algebra, the velocity of either sphere at

any point on its surface can be described as the vector or cross product of its

rotational vector with the radius vector of the point, i.e. ¥V = @ X R. This
discussion of the changing relationship between the rotational axes is also a

precise description of a part stroked across a lap.

Friction, which can be shown to be Coulomb friction, will tend to bring any part

in continuous contact with an abrasive lap into rotational synchronization with



that component of the lap rotation passing through the centroid or center of
gravity (CQ) of the contact area, provided that the part is free to so rotate.
However, friction and inertial effects prevent or retard the complete acheivement
of such synchronization. In most steady state systems that are frictionally
driven, parts tend to rotate slightly slower than the lap component passing
through the centroid of contact area. The relative motion leading to wear is then
almost entirely due to the component of lap rotation orthogonal to the radius
passing through the centroid of contact area. Relative velocity tends to a slight
maximum in the region of this centroid for finite radii of curvature.

Simultaneous translations of the centroid and rotations about it produce wear in
a circular zone about the centroid that in plane systems (infinite radius of
curvature) may be summed for averaging purposes as an elliptic integral of the
second kind. This is quite general and usually convenient. The integrand of the
averaging integral is a radical whose radicand is the square of the relative
velocity. In a plane systems the radicand is the form

V: = A42+B*+2A4Bcosx where A2>B

= AY(1+C?+2Ccosx) where 0<C=B/A

A2 (1+2C+C*-2C(1-cosx))

4C
A2 (1+C)*(1-———sin?X)

(1+Cc)* 2
The first two factors are usually constants and the third is the radicand function

traditionally listed for elliptic integrals of the second kind. Since the cos function

is even, the limits of the averaging integral need only range from 0 to n at

maximum, and obviously for the last form need only range from 0 to n/2

maximum. The second term in the radicand is usually written as k*sin’z to
emphasize that it must be positive, so that it represents a negative value when

preceded by the minus sign. This is a point of considerable importance which we



shall return to in setting up limits of integration. The reason for the restrictions

on C lies in the convergence criteria for implied series solutions.

Now either sphere or any part of it can represent the lap and the other, the part.
We are now going to adopt and describe an all positive layout. We shall assume
counterclockwise rotations aré positive in the direction of angular increase and
that angles are measured from the traditional 3 o'clock line. We shall describe a
large flat lap on which is placed a small circular part with its center fixed in place
at 3 o’clock with a separation D between centers. Radii measured from lap center
are represented by R and those from part center by r. Angles shall be measured
from the lines joining the centers and shall be represented by X to a lap radius
and by x to a part radius. Angular velocity for the lap shall be Q and for the part,

. Any point p within the boundary of the part can be located at the intersection

of R and F. The relationship between X and x is defined by the projection of R
and r onto this common height. As mentioned, at steady state in a frictionally-

driven system Q = o although linkage friction virtually insures o < Q. If we let

A = Q - @ then A as expressed in our equation will represent the larger of either
(rA) or (DQ) and B will represent the smaller. The argument of the cosine will be

either X or x depending on which of R or 7 we are holding constant (i.e. do we
wish to average lap wear or part wear across the appropriate arc of contact). Now
in a driven system, A may be negative, as could Q. In a double-faced lap where
thin parts are involved, plates are frequently counter-rotated to reduce drag
reactions on the thin part edge. In this case, for calculations for one lap or the
other, one value of Q will be negative. If the sense of either A or Q makes the
product C cos(x) become negative, we must change the sign of cos(x) by replacing
the dummy variable x with (x - x) and this will change the sign of the integral

since d(n - x) = —dx and this sign may be reversed by interchanging the limits.

Thus if we have incomplete integrals initially (i.e. either a lower limit (a) greater
than 0 or an upper limit (b) less than &, the new upper and lower limits will be (n

- a) and (n - b) respectively.



The modern double-faced lap is rather complex. In the most sophisticated cases,
the lap is an annular zone where at inner and outer radii represented by R, and

R,, gear or pin rings rotate at angular velocities Q, and Q,, respectively, and the
lap surface rotates at Q,, we may define an effective part rotation w and a

rotation difference from

g = R -RQ
R; - R,
F = R,Q, + RiQ,
’ Rz +Rl
= E-F

With these substitutions, the formulae for this more complex case can be shown
to reduce to that derived earlier.

We shall, of course, discuss the single term that describes the velocity of the lap
into the finite radius geometry, differentiating spherical from flat lapping, and
methods for correcting double-sided lapping surfaces (i.e. concentric spherical
errors as well as toroidal through errors).
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